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Fresnel Integrals and Related Functions 

By Oscar L. Fleckner* 

Abstract. A new method for computing the values of the Fresnel integrals and 
related functions is developed. Error estimates for the resulting power series are 
derived, and an application of the technique is discussed. 

1. Introduction. The objective of this paper is to develop a method for computer 
generation of the functions C(x, a) and S(x, a) where 

C(x, ) = fcos t/tadt (O a <1), 

(1.1) 0 

S(x, a) = f sin t/tadt (0 < a <1) 

for x _ 0. 
Note that S(x, 1) is the familiar sine integral Si(x). Also for a = 1/2 we have 

-1/2CX /2SX (1.2) (27r) 0(x, 1/2) = C(x) and (27r)- S(x, 1/2) = S(x), 
where C(x) and S(x) are the well-known Fresnel integrals (see [5]). Often in the 
literature C(7rx2/2) and S(irx2/2) are called Fresnel integrals and are denoted by 
C(x) and S(x), respectively, (see [1]). 

2. Analysis. The Maclaurin expansions for 0(x, a) and S(x, a) are given by 

C~x~a) = 1(-l x 2' 
(2.1) C=0 (2v + 1 -a (2v) 

S~x, a) =(2-a) __________________ 
S(X 'a) E ;F-= (2v + 2 -a)(2v + 1)! 

By the ratio test one can show that these series converge for all real values of x, 
although it is clear that for large x many terms are required before succeeding 
terms become negligible. 

For relatively small values of x a digital computer program that evaluates the 
truncated power series for Q(x, a) and S(x, a) directly will produce excellent re- 
sults both in accuracy and speed. It is also evident that for large values of x, use 
of the power series technique will lead to computational difficulties such as "round- 
off" error and loss of significance due to the large number of terms needed to in- 
sure a specified accuracy. Hence, an alternative computational technique is re- 
quired for large values of x. 

For x _ 57r/2, C(x, a) can be evaluated by direct substitution in its truncated 
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power series. Hence, let an arbitrary xo > 57r/2 be given. Let k be a nonnegative 
integer such that (2k + 1)7r/2 < xo < (2k + 3)7r/2 and put Ok = (2k + 1)7r/2. 
Then it readily follows that 

(2.2) C(xO, a) = C(Ok, a) + (-1)k+10ka J (1 + y/Ok)fa sin ydy . 

In a similar fashion, for xi > 27r, m the greatest nonnegative integer such that 
m7r < xi, and 4'm = mTr, we get 

(2.3) S(x1, a) = S(Om, a) + (-m1) mm f (1 + y/4m)- sin ydy. 

For notational simplicity, let 

rP 
(2.4) H(p, 'y, a) = L (1 + y/y) 

` sin ydy. 

Then (2.2) and (2.3) become 

(2.5) C(xo, a) = C(Ok, a) 4- (I)k+l0 -aH(xo - 0k, Ok a) 

S((xl, a) = SQ(Om, a) + (-1)m4-aH (Xi - Om, Om, a). 

Assuming that the values of C(Ok, a) and S(Om, a) are known, the problem of evalu- 
ating the functions C(x, a) and S(x, a), as equations (2.5) show, has been reduced 
to the problem of evaluating the integral H. We prove the following theorem. 

THEOREM 1. If O < p < y and O < a < 1, and H(p, -y, a) is as in (2.4), then 

H(p, -y, a) = A a^Kv (p, y), 
V=o 

where 

(2.6) a. - ( 
OF! (a) = P1 r(a + v)/r(a) 

rP 
(2.7) K,(p, y) = f (y/y)P sin ydy (v = 0,1, * *). 

0 

Proof. Since y/y < 1 and 0 ? a < 1, the expansion of (1 + y/y)-a is valid. 
Thus, 

rP 
1 (1 + / -a i d 

= | 1- () ((/7,) a )-2 (Y/, ) 2 3(Y/.)3+* ]sinydy 

Termwise integration yields 

H (p, y, a) = X (-1)' (a) K (p, My) 

and the result is proved. 
Applying Theorem 1 to the expressions for C(xo, a) and S(xi, a) given by 

equations (2.5), we obtain 
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C(xo, a) = C(Ok, a) + (-1) k?10Ja E atKp(xo - Ok, Ok) 
(2.8) v_0 

S(x1, a) = S (,m, a) + (-1 )mf-t E a,,K, (xl - 4m, Ofm) . 
V=0 

We have now reduced our computational problem to evaluating a sum of the 
form 

(2.9) E aK. (P, MY) 
V=o0 

where the changes of variable that we have performed have restricted p such that 
0 ? p ? 7r < y. The following theorem gives a recursion scheme for computing 
the values of K,(p, y), v = 0,1, 2, 

THEOREM 2. The auxiliary functions K,(p, -y) satisfy the following recurrence re- 
lation: 

Ko(p, y) = 1 - COS P. 

(2.10) Ki(p, y) = (1/'y) sin p - (p/y) cos p, 
K.(p, Y) = c.Kn-2(p, 'Y) + d, n = 2, 3, ... I 

where 
Cn= -n(n- 
d = - (p/-y)n cos p + (n/y) (p/,y)n--l sin p. 

Proof. The expressions for Ko(p, -y) and Kj(p, y) follow immediately by direct 
integration of (2.7). Two applications of integration by parts to (2.7) yield the 
desired result. 

Equations (2.8) together with Theorems 1 and 2 solve the problem of the 
evaluation of the functions C(x, a) and S(x, a). Let us now try to estimate the 
rate of convergence of (2.9). 

THEOREM 3. If 0 < p _ ir < y, then for any positive integer N, 

(2.11) |E aK,(p, y) - E anK.(P, 'Y) ? |aNKN(P ) - ( )() 7 

Proof. Since 0 < p ? ir < a, we have 

(y/y)n sin y _ 0 for 0 ? y p. 

Thus, Kn(p, -y) _ 0 for all n, and 

(P ,o+? 
Kn(p,:y) - (1/7)~ Jo?/ydy = (n + i)Yn 

Hence, 

(2.12) Kn (Pi -Y) < Tn + 7( 
r 

and since janI ? 1 for all n, we have 

(2.13) aKn(p, -y)J = a.IKn(p, - < (n +i 7)(j 
for all n. Therefore, 
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t=.1axJ ~n0 noX71 -0 o n + 1Jy 
The latter sum of (2.14) converges by the ratio test. Therefore (2.9) converges by 
comparison. Applying the property of an alternating convergent series in which 
the terms are monotonically decreasing in magnitude yields the first inequality in 
(2.11). The result now follows from (2.13). 

Applying Theorem 3 to the summations appearing in equations (2.8), we obtain 

coo N1 /N 

| a^K (xo - Ok Ok) - aK, (xo - Ok, Ok) <N + l)( i 

(N + 1) (k + 1/2)N 

and 

a.K.(xl-'m, cIm) -(E avKv(xi -'m, (In) \ (N 1)(CI, ) 
or 

(N + 1)mN 

3. An Application. The method derived in Section 2 of this paper for the compu- 
tation of the functions C(x, a) and S(x, a) was carried out for the case of the 
Fresnel integrals C(x) and S(x) of (1.2). 

In this case equations (2.8) become 

C(xO) = C(Ok) + (- 1)k+ (2rOk)1/2 E aK,(xo - Ok, Ok) 

(3.1) so 

S(xl) = S(4km) + (-1)m(27r0r)-n1/2 E a.K. (xi - Im, 'km) 
V 0 

The method itself was implemented as follows. A maximum value of the argu- 
ment, xlax, was chosen. In the case of C(x), the greatest nonnegative integer K 
was determined such that (2K + 1)r/2 < Xmax. Then the integrals C(Ok) were 
computed for k = 2, 3, * , K, where C(02) was evaluated by direct substitution 
in the truncated power series expansion for C(x). C(O3), C(04), . . ., C(OK) were 
evaluated using equation (3.1). These values were then stored in a linear array, 
ordered by their subscripts. In the case of S(x), the greatest nonnegative integer 
M was determined such that M7r < max. The integrals S(4m) were computed for 
m = 2, 3, * , *X, where S(02) was computed from the truncated Maclaurin ex- 

pansion. S(I'3), S(44), * *, S(om) were evaluated using (3.1). These values were 
also stored in an array according to their subscripts. These two tables, set up 
initially, were used throughout in the evaluation of C(x) and S(x) for various 
values of x. 

Now, for x' < xrlax,, C(x') and S(x') were computed as follows. In the case of 

C(x'), if 0 < x' < 5ir/2, C(x') was evaluated by the direct substitution of x' in 
the truncated power series expansion for C(x). If x' > 5ir/2, the integer k was 
determined such that (2k + 1)7r/2 < x' < (2k + 3)7r/2. Then from the previously 
computed value of C(Ok), C(x') was determined from (3.1). For S(x'), if 0 < x' < 27r, 
the power series technique was employed. If x' > 2Fr, the integer m was found 
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such that mir < x' < (m + 1)ir and since S(.m) is known, S(x') can also be evalu- 
ated using (3.1). 

4. Results. The values of C(x) and S(x) were computed for x = 0(.2)60 for 
purposes of checking the method and program. Xmax was chosen to be 100, and 
the program tolerance for the computation of C(Ok) and S(Ok), k = 2, 3, * * *, 32 
was ? 10-8. In the computation of C(x) and S(x) for x = 0(.2)60 a tolerance of 
?10-6 was chosen. The results of the computation are on deposit in the Unpub- 
lished Mathematical Tables file. 

The computed values of C(x) and S(x) were compared with those compiled by 
T. Pearcey [6]. In all cases, a deviation of not more than two units in the sixth 
decimal place was observable. 

The program, written in OSU SCATRAN (a compiler language similar to 
MAD and PL/I), is available on request from the author. The computations were 
done on an IBM 7094 computer in single precision (i.e. 8 or 9 significant digits). 

Table 1 shows the number of terms, N, that had to be included in order to 
achieve the desired accuracy in the computation of C(Ok) and S(4k) for some rep- 
resentative values of k. 

TABLE 1 

k N(C) N(S) 

3 15 18 
6 9 9 
9 7 8 

12 7 7 
15 6 6 
25 5 5 
30 5 5 

5. Discussion. In connection with Theorem 2, it should be noted that the 
computational results might be enhanced by using the recurrence relation in the 
backward direction (see [3]).* Let K&(p, y) be computed for n = 0, 1, * * *, N by 
forward recurrence (2.10), yielding {yn }. Suppose that initial errors Eo and el are 
introduced (due to rounding, for example) and that the succeeding calculations are 
performed with infinite precision, i.e. we have 

yo = Ko + Eo , Yl = K1 + El 

Then, for n even, the relative error of yn is 

-(Y -Kn)/KnI = [n!/ynKn]jeo. 

Similarly, in case n is odd, 

I (n -Kn)/Kn I= - !/ [ n-lKn]|enl 

Thus, from (2.12) and the fact that y > ir, we get 

(5.1) I(YN - KN)/KNI > [(N + 1)!/irN+1]lI , 

where |EJ = min (Ieol, E11). 

* The author is indebted to the referee for pointing out this possibility. 
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(5.1) shows that the straightforward application of the recurrence relation (2.10) 
in the forward direction may lead to serious problems depending on how many 
terms of (2.9) are needed to insure the specified accuracy. This suggests that in 
some circumstances it would be best to use (2.10) in the backward direction. 
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